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Motivation

Suppose we have an important economic question

To answer this question, we use data on the dynamic behavior of
economic agents

Dynamic discrete choice models are tools to analyze these data

The Markov assumption is a key part of these models

Many important implementations

Many important papers about the properties of these tools
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Motivation
Research Questions

1 What testable restrictions does the Markov assumption place on the
data?

2 What happens if the agent knows more than the researcher?

3 What can the data tell us about the unobserved information?
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Roadmap of Today’s Talk

1 Dynamic Discrete Choice Framework with Unobserved Heterogeneity
2 The Observed Markov Property

Observable Implications of the Markov Assumption
Unobserved Heterogeneity that Preserves the Markov Property
Unobserved Heterogeneity that Violates the Markov Property
Identification of the Unobserved State

3 Testing the Markov Property
4 Special Cases

Persistent Types
Stationary Initial State
Time Dependent Policy Function

5 Monte Carlo Evidence and Applications
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Data

”Short” Panel:

Agents/markets: i = 1, . . . , n

Time periods: t = 1, . . . ,T

Actions: ait

Environment: xit

Asymptotics: n→ ∞, T fixed

Can directly estimate: P {(at , xt) , t = 1, . . . ,T}
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Model
Agent and Environment

Discrete time index: t = 1, 2, . . .
State space: st ∈ S , cardinality is known: |S| = S

Probability distribution over the initial state: P(s1)

Action set: at ∈ A, cardinality is known: |A| = A

State transition probability function: Pt(st+1|s1, a1, . . . , st , at)

Utility functional: V (st) = Et

[
∑+∞

τ=t βτ−tv(sτ, aτ) + ετ(aτ)
]
, that

consists of:

the single period utility function v(st , at) : S ×A → R

the agent’s discount factor β ∈ (0, 1)
the idiosyncratic action-specific error term ετ = (ετ(1), . . . , ετ(A))
drawn independently across time from a distribution defined by a p.d.f:
f (εt |st) : RA × S → R

John Lazarev (NYU) Identification Under the Markov Property 03/28/2015 6 / 20



Model
The Markov Assumption and the Optimal Policy

Assumptions

1 The state transition Pt(st+1|st , at) has the Markov property:
Pt(st+1|s1, a1, . . . , st , at) = Pt(st+1|st , at) for any t > 1.

2 The state transition is time homogenous:
Pt(st+1|st , at) = P(st+1|st , at) for any t.

Proposition There exists an optimal decision rule that has the Markov
property: d∗(st , εt) = at

Conditional choice probabilities: P(at |st) = E[I(d∗(st , εt) = at)].
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The Unobserved Heterogeneity

Unobserved Heterogeneity = the researcher has only partial information
about the state of the world

Formally,

st = (xt , ut)

the agent observes st

the researcher observes xt but not ut

define a coarsening function U : S → X
denote X = |U(S)|
unobserved heterogeneity is present when X < S
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The Observed Markov Property

Data

The date are defined by P {(at , xt) , t = 1, . . . ,T}
Its dimensionality: (AX )T − 1

Can these data be rationalized by a dynamic discrete choice model that
has the Markov property?

without unobserved heterogeneity

with unobserved heterogeneity
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No Unobserved Heterogeneity

Assume S = X

Model
Elements of the Structure:

initial state: P(s1)
state transition: P(st+1|st , at)
optimal policy: P(at |st)

Its dimensionality: (S − 1) + (S − 1)AS + (A− 1)S = AS2 − 1

Thus, the Markov assumption reduces the dimensionality of the object
from (AS)T − 1 to AS2 − 1. The number of imposed restrictions grows
exponentially with T .

Example

S = 3, A = 2, T = 5
dimensionality of the generic process: 65 − 1 = 46, 656
dimensionality under the Markov assumption: 2 · 31 − 1 = 7
Probability of a randomly chosen process to violate the Markov
property: 99.985%
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Unobserved Heterogeneity

Suppose X < S . What can we infer from the data about the unobserved
heterogeneity?

Four reasons for lack of identification:

1 relabeling

2 irrelevance (zero-probability states)

3 ovefitting

4 collinearity
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Unobserved Heterogeneity
Overfitting

Dimensionality of the data: (AX )T − 1

Dimensionality of the model: AS2 − 1

Proposition 2: If T < log(A)+2 log(S)
log(A)+log(X )

, then the primitives of the model are

not identified.
Proposition 3: If X < S2/T

A
T−1
T

, then the primitives of the model are not

identified.
Proposition 4: Generically, the dimensionality of the data does not equal
to the dimensionality of the model.
Thus,

The panel cannot be too short

The unobserved heterogeneity cannot be too rich

The unobserved heterogeneity is either under- or overidentified
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Unobserved Heterogeneity
Collinearity

Definition Two states s and s ′ are called collinear if:

U(s) = U(s ′)

P(a|s) = P(a|s ′) for all a ∈ A
∑s̃ s.t. U(s̃)=const P(s̃ |a, s) = ∑s̃ s.t. U(s̃)=const P(s̃ |a, s ′)

Proposition 5 The primitives of the model are identified for some T if
and only if the state space S does not have collinear states.

Proposition 6 Suppose the data are Markov. Then either there is no
unobserved heterogeneity or the state space has collinear states.
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Unobserved Heterogeneity
Bottom Line

Should we be worried about unobserved heterogeneity?

If the data are Markov, then

either there is no unobserved heterogeneity
or we cannot tell anything about the unobserved state

If the data are not Markov, then

we can identify unobserved heterogeneity as long as it is not too rich
if we can identify unobserved heterogeneity, we will have a set of over
identifying restrictions that we can test
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Testing the Markov Property

Standard testing framework:

H0 = the Markov model

H1 = unrestricted process

Three tests are available:

Estimate the Markov model and run a LM test

Estimate the unrestricted model and run a Wald test

Estimate both models and run a LR test
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Special Cases
Persistent Types

J persistent types: the unobserved part ut doesn’t change over time

dimensionality of the model:

initial state: (X − 1)J
state transition: (X − 1)XJ
policy function: (A− 1)XJ
distribution of types: (J − 1)
overall: X 2J + AXJ − 1

dimensionality of the Data: (AX )T − 1

Threshold T = log(X )+log(J)+log(A+X )
log(A)+log(X )

Threshold J = ATXT−1

A+X

No collinear states if different types either act or affect state
transition differently
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Special Cases
Stationary Initial State

P(S1) is the stationary distribution of the Markov process

Dimensionality of the model reduces to
(S − 1)AS + (A− 1)S = AS2 − S

Dimensionality of the data: (AX )T − 1

Threshold T = log(AS2−S+1)
log(A)+log(X )

Threshold X = (AS2−S+1)1/T

A
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Special Cases
Time Dependent Optimum Policy

Suppose the optimal policy is time-dependent (e.g. finite-horizon)

Dimensionality of the model:

initial state: (S − 1)
state transition: (S − 1)SA
policy function: (A− 1)ST
overall: AS2 + (T − 1)S(A− 1)− 1

Dimensionality of the data: (AX )T − 1

Dimensionality of the model grows linearly in T

Dimensionality of the data grows exponentially in T

Therefore, the data are still informative
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Main Takeaways from the Paper

1 Unlike many econometric models, the Markov assumption imposes a
number of testable restrictions on the data.

2 If the data do not reject the Markov property, we cannot say much
about unobserved heterogeneity.

3 If the data reject the Markov property, then unobserved heterogeneity
can be potentially recovered from the data.
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To Be Investigated

1 Monte Carlo properties of different tests

2 What can we say about unobserved heterogeneity in the well-known
applications (e.g. Rust (1987), Ryan (2012))?

3 What exactly will we estimate if a part of the state is unobserved but
the Markov property still holds?

4 What exactly will we estimate if a part of the state is unobserved and
the Markov property fails?
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